Chapter 13 Questions

Section 13.1

1) Explain what is incorrect about the following statements:
a) At equilibrium, no more reactants are transformed into products.
b) At equilibrium, there are equal amounts of reactants and products.
2) The following diagram represents the amounts of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} in a synthesis reaction of NH_{3} :

a) Describe which line represents which substance in the graph and why.
b) When is equilibrium reached? How do you know?

Section 13.2(a) \& 13.4

4) Write the expression for K_{c} for the following reactions. In each case, indicate whether the reaction is homogeneous or heterogeneous.
a) $3 \mathrm{NO}(\mathrm{g})<==>\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$
b) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})<==>\mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$
c) $\mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})<==>\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g})$
d) $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})<==>2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e) $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})<==>4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
f) $\mathrm{Ti}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g})<==>\mathrm{TiCl}_{4}$ (l)
g) $2 \mathrm{KClO}_{3}(\mathrm{~s})<==>2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
h) $2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})<==>2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Section 13.2(b)

7) Gaseous hydrogen iodide is placed in a closed container at $425^{\circ} \mathrm{C}$, where it is partially decomposed to hydrogen and iodine. At equilibrium, it is found that $[\mathrm{HI}]=3.53 \times 10^{-3} \mathrm{M}$, $\left[\mathrm{H}_{2}\right]=4.79 \times 10^{-4} \mathrm{M}$ and $\left[\mathrm{I}_{2}\right]=4.79 \times 10^{-4} \mathrm{M}$. What is the value of K_{c} at this temperature?
8) Methanol is produced by the following reaction: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})<==>\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$. An equilibrium mixture in a 2.00 L vessel is found to contain $0.0406 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}, 0.170 \mathrm{~mol}$ CO and $0.302 \mathrm{~mol} \mathrm{H}_{2}$ at 500 K . Calculate K_{c} at this temperature.
9) Consider the following reaction:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})<==>\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{K}=2.0$
Some molecules of $\mathrm{H}_{2} \mathrm{O}$ and CO are placed in a 1.0 L container as shown below:

When equilibrium is reached, how many molecules of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{H}_{2}$ and CO_{2} are present? Do this problem by trial and error: if two molecules of CO react will equilibrium be established? How about three molecules of CO?
5) When the following reactions come to equilibrium, does the equilibrium mixture contain mostly reactants or mostly products?
a) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<==>2 \mathrm{NO}(\mathrm{g}) \mathrm{K}_{\mathrm{c}}=1.5 \times 10^{-10}$
b) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<==>2 \mathrm{SO}_{3}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}}=2.5 \times 10^{9}$
6) Which of the following reactions lies to the right, favoring the formation of products, and which lies to the left, favoring the formation of reactants?
a) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})<==>2 \mathrm{NO}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}}=5.0 \times 10^{12}$
b) $2 \mathrm{HBr}(\mathrm{g})<==>\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}}=5.8 \times 10^{-18}$
9) At $1285{ }^{\circ} \mathrm{C}$, the K_{c} for the reaction $\mathrm{Br}_{2}(\mathrm{~g})<==>2 \mathrm{Br}(\mathrm{g})$
is 1.04×10^{-3}. A 0.200 L flask containg an equilibrium mixture contains 0.245 g of Br_{2}. What is the mass of $\mathrm{Br}(\mathrm{g})$ in the flask?
10) At $100{ }^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=0.078$ for the following reaction:
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})<==>\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
In an equilibrium mixture of the three gases, the concentrations of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and SO_{2} are 0.108 M and 0.052 M , respectively. What is the $\left[\mathrm{Cl}_{2}\right]$ in the equilibrium mixture?

Section 13.3

11) Write K_{p} expressions for each of the reactions in question 4. Be careful of the heterogeneous reactions.
12) At 500 K the following equilibrium is established: $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})<==>2 \mathrm{NOCl}(\mathrm{g})$. An equilibrium mixture of three gases has partial pressures of $0.095 \mathrm{~atm}, 0.171 \mathrm{~atm}$ and 0.28 atm for $\mathrm{NO}, \mathrm{Cl}_{2}$, and NOCl respectively.
a) Calculate K_{p} for this reaction at 500 K .
b) Calculate the K_{c} for this reaction at 500 K .

Section 13.5

15a) How does a reaction quotient differ from an equilibrium constant?
b) If $\mathrm{Q}<\mathrm{K}$, in which direction will a reaction proceed in order to reach equilibrium?
c) What condition must be satisfied so that the $\mathrm{Q}=\mathrm{K}$?
d) At the start of a certain reaction, only reactants are present. No products have been formed. What is the value of Q at this point in the reaction?
16) At $450{ }^{\circ} \mathrm{C}$ the $\mathrm{K}_{\mathrm{p}}=4.51 \times 10^{-5}$ for the equilibrium:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})<==>2 \mathrm{NH}_{3}(\mathrm{~g})
$$

For each of the mixtures listed here, indicate whether the mixture is at equilibrium. If it is not at equilibrium, indicate the direction (toward products or toward reactants) in which the mixture must shift to achieve equilibrium.
a) $105 \mathrm{~atm} \mathrm{NH}_{3}, 35 \mathrm{~atm} \mathrm{~N}_{2}$ and $495 \mathrm{~atm} \mathrm{H}_{2}$
b) $35 \mathrm{~atm} \mathrm{NH}_{3}, 595 \mathrm{~atm} \mathrm{H}_{2}$ and no N_{2}
c) $26 \mathrm{~atm} \mathrm{NH}_{3}, 42 \mathrm{~atm} \mathrm{H}_{2}$ and $202 \mathrm{~atm} \mathrm{~N}_{2}$
d) $105 \mathrm{~atm} \mathrm{NH}_{3}, 5.0 \mathrm{~atm} \mathrm{~N}_{2}$ and $55 \mathrm{~atm} \mathrm{H}_{2}$

Section 13.6

19) At $400 \mathrm{~K}, \mathrm{~K}_{\mathrm{c}}=7.0$ for the equilibrium $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})<==>2 \mathrm{BrCl}(\mathrm{g})$
If 0.30 mol of Br_{2} and $0.30 \mathrm{~mol}_{2}$ are
introduced into a 1.0 L container at 400 K , what will be the equilibrium concentration of BrCl ?
20) For the reaction $\mathrm{I}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})<==>2 \mathrm{IBr}(\mathrm{g})$, $K_{c}=280$ at $150{ }^{\circ} \mathrm{C}$. Suppose that 0.500 mol IBr in a 1.00 L flask is allowed to reach equilibrium at $150{ }^{\circ} \mathrm{C}$. What are the equilibrium concentrations of all materials in the flask?
21) At $700{ }^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=20.4$ for the reaction $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})<==>\mathrm{SO}_{3}(\mathrm{~g})$
a) What is the value for K_{c} for the reaction $\mathrm{SO}_{3}(\mathrm{~g})<==>\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$?
b) What is the value of K_{p} for the original reaction?
22) At 900 K , the following reaction has $\mathrm{K}_{\mathrm{p}}=$ 0.345 :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<==>2 \mathrm{SO}_{3}(\mathrm{~g})$
In an equilibrium mixture the partial pressures of SO_{2} and O_{2} are 0.165 atm and 0.755 atm , respectively. What is the equilibrium partial pressure of SO_{3} in the mixture?
23) A mixture of 0.100 mol of $\mathrm{NO}, 0.050 \mathrm{~mol}$ of H_{2} and 0.10 mol of $\mathrm{H}_{2} \mathrm{O}$ is placed in a 1.0 L vessel. The following equilibrium is established at 298 K :
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})<==>\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
At equilibrium $[\mathrm{NO}]=0.062 \mathrm{M}$.
a) Calculate the concentrations of $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$.
b) Calculate K_{c}.
c) Calculate K_{p}.
24) A mixture of 0.0457 mol of NO and .0379 mol of Cl_{2} is placed in a 5.00 L flask at 500 K . The chemical reaction of

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})<==>2 \mathrm{NOCl}(\mathrm{~g})
$$

occurs and creates 0.0341 mol of NOCl .
a) Calculate the initial partial pressures of each reactant.
b) Calculate the equilibrium partial pressures of all three materials.
c) Calculate K_{p}.
d) Calculate K_{c}.
21) When 1.50 mol CO 2 and 1.50 mol of H 2 are placed in a 3.00 L container at $395{ }^{\circ} \mathrm{C}$, the following reaction occurs:
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})<==>\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{Kc}=0.802$ What are the concentrations of each substance in the equilibrium mixture?
22) Solid $\mathrm{NH}_{4} \mathrm{SH}$ is introduced into an evacuated flask at 297 K . The following reaction takes place: $\mathrm{NH}_{4} \mathrm{SH}(\mathrm{s})<==>\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ At equilibrium, the total pressure of gas is 0.614 atm. What is the K_{p} for this equilibrium at 297 K.

Section 13.7

23) Consider the following equilibrium, for which $\Delta \mathrm{H}<0: 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<==>2 \mathrm{SO}_{3}(\mathrm{~g})$
How will each of the following affect an equilibrium mixture of the three gases?
a) $\mathrm{O}_{2}(\mathrm{~g})$ is added to the system
b) The reaction mixture is heated
c) The volume of the reaction vessel is doubled
d) A catalyst is added to the mixture
e) The total pressure of the system is increased by adding a noble gas
f) $\mathrm{SO}_{3}(\mathrm{~g})$ is removed from the system
24) For the following reaction, $\Delta \mathrm{H}^{\mathrm{O}}=2816 \mathrm{~kJ}$
$6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})<==>\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})$

Review

1) Determine the molar mass of a gas that has the following data: mass $=0.931 \mathrm{~g}$, volume $=$ 495 mL , pressure $=105 \mathrm{kPa}$, temperature $=83.0$ ${ }^{\circ} \mathrm{C}$.
2) 450 mL of 0.525 M sodium chloride is added to 235 mL of 0.640 M lead (II) nitrate. How many grams of precipitate are made by the reaction?
3) Write the net ionic equations for the following reactions:
a) the reaction of solid magnesium with aqueous hydrobromic acid
b) solid calcium chloride is placed in a solution of silver nitrate
c) aqueous nickel chloride is poured on top of a piece of gold metal

4a) How many grams of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ are needed to make 50.0 mL of a 0.750 M solution?
b) Describe how to dilute the above solution to 100 mL of 0.145 M solution.

How is the equilibrium yield of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ affected by:
a) increasing $\mathrm{P}_{\mathrm{CO} 2}$
b) increasing temperature
c) removing CO_{2}
d) decreasing total pressure
e) removing part of the $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
f) adding a catalyst
25) How do the following changes affect the value of the equilibrium constant for an exothermic reaction?
a) removal of reactant or product
b) decrease in volume
c) decrease in the temperature
d) addition of a catalyst
5) Rubidium has two naturally occurring isotopes: Rb-85 (atomic mass $=84.9118 \mathrm{amu}$, abundance $=72.15 \%$) and $\mathrm{Rb}-87$ (atomic mass $=$ 86.9092 amu , abundance $=27.85 \%$). Calculate the atomic weight of rubidium.
6) Monosodium glutamate (MSG), a flavor enhancer in certain foods, contains $13.60 \% \mathrm{Na}$, $35.51 \% \mathrm{C}, 4.77 \% \mathrm{H}, 8.29 \% \mathrm{~N}$, and $37.85 \% \mathrm{O}$, and has a molar mass of $169 \mathrm{~g} / \mathrm{mol}$. What is the empirical formula and molecular formula for MSG?
7) Hydrogen gas is produced when zinc reacts with sulfuric acid. If 159 mL of hydrogen is produced at $24^{\circ} \mathrm{C}$ and a barometric pressure of 738 torr, how many grams of zinc were consumed?

