

Acceleration If an object is not going a constant speed or

An object increasing speed has a positive acceleration. An object slowing down will have a negative acceleration.
Acceleration is the change in velocity over a

acceleration is the change in velocity over a certain period of time. $a = \frac{\Delta v}{\Delta v}$

 Δt The unit for acceleration is m/s²

Graphing Acceleration There are two ways to graph acceleration so that the slope of the best-fit line gives you acceleration: Speed vs. time Distance vs. time squared

Types of Acceleration	
Average Acceleration, the average change in velocity, is the slope of the best-fit line of a velocity vs. time graph.	
Constant Acceleration occurs when an object changes velocity the same amount every second.	
Instantaneous Acceleration, the amount of velocity change right now, is determined by the slope of the tangent of a velocity vs. time curve	

Determining Final Velocity

If an object undergoes constant acceleration over a period of time, the final velocity can be calculated by using the following equation:

 $v_f = v_i + at$

Acceleration and Displacement Displacement is much easier to measure than velocity, so it is helpful to have relationships between displacement and constant acceleration. As we have seen before: $d = v_{(merage)} * t$ Since $v_{(merage)}$ is simply 1/2 ($v_1 + v_1$), by mathematical manipulation, we can derive the formula: $d = 1/2 (v_1 + v_1)t$

Displacement, Time and
 When the acceleration is constant, and we know the initial velocity and the time the acceleration occurs, the equations $d = 1/2 (v_f + v_i)t$ and $v_f = v_i + at$
Can be easily changed into: $d = v_i t + 1/2at^2$
For an object that starts at rest, the equation is simply d=1/2at ²

But wh time?	at if you don' t know
By takin	g the equations we have
develo	ped so far, it is possible to find
displac	cement if the time is not known.
By using	$v_{f} = v_{i} + at$ and $d = 1/2 (v_{f} - v_{i})t$
	er, the following equation can be
develo	iped:
	$v_{f^2} = v_{i^2} + 2ad$

Gravita	ational Acceleration
1	s will fall with the same acceleration if stance can be ignored.
place o	leration varies slightly from place to on the Earth. We will therefore use a owing gravitational value: g = -9.8 m/s ²
pulls do	tive is to indicate that the acceleration own. The letter g can replace a in all acceleration equations.

