Builder Molecules 2

4)

Name: _____

Part 1: Naming Given the following structures, write the name of the compound. Be sure to include numbers for branches and location of double and triple bonds.

,	$\begin{array}{c} CH_3\text{-}CH_2\text{-}C\text{=}C\text{-}CH_3\\ \\ CH_3 CH_3 \end{array}$, Cł	H_3 -CH ₂ -CH ₂ -CH ₂ -CH ₂ C=C-CH ₃
2)	CH=CH-CH=CH / \ CH CH \\ // CH-CH=CH-CH	5) C	CH_3 H_3 -CH-CH ₂ -CH-CH ₂ -CH-CH ₃ CH ₃ CH ₂ -CH ₂ -CH ₃
3)	CH ₃ -CH=CH-CH ₂ -CH-CH ₃ CH ₃ -CH ₂ -CH ₂ -CH ₂	6) CH	$H_3-C \equiv C-CH_2-CH_2-CH_3$ CH_3

Part 2: Drawing Structural Diagrams

Given the following names, draw the structural formula of the compound. Be sure to include proper location for branches and location of double and triple bonds.

7) cycloheptene

1)

10) trans 3,4-dimethyl-3-octene

8) 2,3,4-trimethylpentane

9) 4,6-dimethyl-1-nonyne

12) 2,2-dimethylpropane

11) 3,6-decadiene

Builder Molecules 2

Part 1: Naming Given the following structures, write the name of the compound. Be sure to include numbers for branches and location of double and triple bonds.

1)	CH_3 - CH_2 - C = C - CH_3	4)	CH ₃ -CH ₂ -CH ₂ -C=C-CH ₃ CH ₃ CH ₃
2)	CH=CH / \ CH CH \\ // CH-CH	5)	$\begin{array}{c} CH_3 \\ \\ CH_3\text{-}CH\text{-}CH\text{-}CH_3 \\ \\ CH_3 \end{array}$
3)	CH_3 - CH - CH_2 - CH - CH_2 - CH_2 - CH_3 $ $ $ CH_3 CH_3 CH_3$	6)	CH_3 - CH_2 - H_2 - CH_2 = CH_2 = CH_2 - C

Part 2: Drawing Structural Diagrams

Given the following names, draw the structural formula of the compound. Be sure to include proper location for branches and location of double and triple bonds

7) trans 2,3-dimethyl-2-pentene

10) 2-methylhexane

8) cyclononane

11) 1,3-butadiyne

9) 3,4 dimethyldecane

12) 4-methyl-2-octene

Covalent

Name: _____