Gas Laws

Name: \qquad
Show set-up and all work (including units) to receive full credit. Round answers to correct number of significant figures.

1) A gas in a cylinder with a movable piston occupies 3.5 L at a temperature of 293 K . What will be the gas volume if the temperature is raised to 427 K ?
2) A $3.0 \mathrm{ft}^{3}$ balloon is increased in size by decreasing the pressure around the balloon from 1.1 atm to 0.40 atm . What is the new volume of the balloon?
3) A sample of methane $\left(\mathrm{CH}_{4}\right)$ gas occupies $700 . \mathrm{mL}$ at a temperature of $-25.0^{\circ} \mathrm{C}$ and a pressure of $500 . \mathrm{kPa}$. What will be the gas temperature (in ${ }^{\circ} \mathrm{C}$) if the volume is increased to 850 mL and the pressure is raised to 9.50 atm?
4) A sample of gas has a pressure of 8.5 psi at 10 K . What will be the new temperature at constant volume if the pressure is increased to 3.0 atm ?
5) What are the partial pressures of atmospheric gases if the atmospheric pressure is 754 torr and the atmosphere is made up of 78% nitrogen, 21% oxygen, 0.7% carbon dioxide, 0.2% neon, and 0.1% carbon monoxide?
6) Knowing that a gas at STP takes up 22.4 L per mole, how many moles are of a gas are present if you have 5.3 L of that gas?

Gas Laws

Name: \qquad
Show set-up and all work (including units) to receive full credit. Round answers to correct number of significant figures.

1) A sample of CO occupies $54 \mathrm{~m}^{3}$ at 750 K and 2250 torr. What is the volume at STP?
2) A sample of methane initially occupies 0.850 L at 50.0 kPa and $227^{\circ} \mathrm{C}$ is compressed to a volume of 150 ml . If the temperature is kept constant, what will be the new pressure?
3) A $2.0 \mathrm{~m}^{3}$ helium balloon at a pressure of 1.0 atm at the earth's surface ascends to a height of 10.0 km above the surface where the air pressure is 0.27 atm . What will be the volume of the balloon at that height (assuming the temperature doesn't change)?
4) A mixture of gases in a scuba tank has a total pressure of 300 kPa . If He has a pressure of 0.6 atm and N_{2} has a pressure of 825 mmHg , what will be the pressure of the remaining oxygen gas in the tank?
5) A 25.0 mL sample of oxygen gas contains 0.079 moles of gas. If more gas were added to the sample that made the volume 0.125 L , how many moles of gas would be present?
6) Helium will turn into a liquid at $-452{ }^{\circ} \mathrm{F}$. In order to make liquid He , one must cool it from STP down to this temperature and a pressure of 225 mm Hg . Suppose you started with one mole of the gas. What would the new volume be under these conditions?
