Gas Laws 2

Name:

\qquad

1) Find the corresponding pressure for 50 kPa in atmospheres, torr and mm Hg .
2) Calculate the corresponding pressure in $\mathrm{psi}, \mathrm{Pa}, \mathrm{mmHg}$ and atm for 790 torr.
3) A constant volume of gas is heated from $25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. The initial pressure was 380 torr. What is the final pressure in atmospheres.
4) A gas is kept at constant pressure, and the volume is increased from $18 \mathrm{~cm}^{3}$ to $50 \mathrm{~cm}^{3}$. The final temperature was measured to be $236{ }^{\circ} \mathrm{F}$. What was the initial temperature, in ${ }^{\circ} \mathrm{C}$.
5) A gas at constant volume is cooled to a final temperature of 76 K . The initial pressure was 76.0 kPa and the final pressure was 100 mm Hg . What was the initial temperature.
6) A gas at constant pressure is cooled to a temperature well below the freezing point of water. The initial volume was 90 ml . The temperature started at $50^{\circ} \mathrm{C}$, and was cooled to $-50^{\circ} \mathrm{C}$. What was the final volume of the gas.
7) A 13 L sample of oxygen gas has a pressure of .79 atm . What will be the new pressure if the volume is reduced to 500 mL ?
8) What is the atmospheric pressure if the partial pressures of nitrogen, oxygen and argon are $602.3 \mathrm{~mm} \mathrm{Hg}, 170.4 \mathrm{~mm} \mathrm{Hg}$, and 1.3 mm Hg , respectively?
9) What are the partial pressures of atmospheric gases if the atmospheric pressure is 754 torr and the atmosphere is made up of 78% nitrogen, 21% oxygen, 0.7% carbon dioxide, 0.2% neon, and 0.1% carbon monoxide?
10) Knowing that an gas at STP takes up 22.4 L per mole, how many moles are of a gas are present if you have 5.3 L of that gas?
11) A 25.0 mL sample of oxygen gas is cooled from 300 K to 241 K , while changing the pressure from 300 torr to 1000 torr. What is the new volume of the gas?
12) Helium will turn into a liquid at $-452^{\circ} \mathrm{F}$. In order to make liquid He , one must cool it from STP down to this temperature and a pressure of 225 mm Hg . Suppose you started with one mole of the gas. What would the new volume be under these conditions?

Answers:

1) $0.49 \mathrm{~atm}, 375$ torr, 375 mm Hg . ${ }^{2}$ 2) $15.3 \mathrm{psi}, 105000 \mathrm{~Pa}, 790 \mathrm{~mm} \mathrm{Hg}, 0.49 \mathrm{~atm} \quad$ 3) 0.71 atm
$\begin{array}{llll}\text { 4) }-134{ }^{\circ} \mathrm{C} & \text { 5) } 433 \mathrm{~K} & \text { 6) } 62 \mathrm{~mL} & \text { 7) } 20.5 \mathrm{~atm} \\ \text { 8) } 774 \mathrm{~mm} \mathrm{Hg}\end{array}$
2) $\mathrm{N}_{2}-588.1$ torr, $\mathrm{O}_{2}-158.3$ torr, $\mathrm{CO}_{2}-5.3$ torr, $\mathrm{Ne}-1.5$ torr, $\mathrm{CO}-0.8$ torr
$\begin{array}{ccc}10) \\ 0.24 \mathrm{~mol} & \text { 11) } 6.0 \mathrm{~mL} & \text { 12) } 1.11 \mathrm{~L}\end{array}$
