Half-Life

Name: \qquad

1) Suppose you start off at your birth with $\$ 2000$. Every year you use half (half-life $=1$ year)
a) How many years to have $\$ 31.25$ remaining?
b) How much $\$$ remaining after 12 half-lives?
2) Cobalt 60 has a half-life of 5 years. How much is gone from 1000 g original amount after 10 years?
3) You are 512 m from a phone booth. Every minute you cut the distance between you and the booth by $1 / 2$ (half-life $=1$ minute).
a) How long to reach the phone booth?
b) How many half-lives to get within 25 cm of the booth?

Directions: Using the table below answer the following questions.

Isotope	Half-life (years)	Type of Decay	Isotope	Half-life (years)	Type of Decay
uranium-238	4.5×10^{19}	alpha	carbon-14	5730	beta
uranium-235	7.1×10^{8}	alpha	plutonium- 239	24000	alpha
thorium-232	1.4×10^{10}	alpha	cesium-137	30	beta
potassium-40	1.3×10^{9}	beta	iodine-131	$.022(8$ days)	beta

4) Write the nuclear reaction for the decay of the plutonium-239 atom.
5) How many years will have elapsed for 1 gram of potassium-40 to remain from a 16 gram sample?
6) In a certain sample of rock containing uranium, 10% of the uranium is uranium-238. After how many years will the sample contain 1.25% uranium- 238 ?
