pH Scale

Name: \qquad

1) What is the concentration of OH - ions in chocolate milk if the $\left[\mathrm{H}^{+}\right]$is $4.5 \times 10^{-7} \mathrm{M}$? Is chocolate milk, acidic, basic, or neutral?
2) What is the $\left[\mathrm{H}^{+}\right]$in black coffee if the $\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-9} \mathrm{M}$? Is the coffee acidic, basic, or neutral?
3) Calculate the pH and pOH of the following solutions and state whether the solution is acidic, basic, or neutral:
a) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-5} \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-9} \mathrm{M}$
b) $\left[\mathrm{OH}^{-}\right]=1.0 \mathrm{M}$
d) $\left[\mathrm{OH}^{-}\right]=3.0 \times 10^{-4} \mathrm{M}$
4) Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for the solutions whose pH values given below:
a) $\mathrm{pH}=4.00$
c) $\mathrm{pH}=12.66$
b) $\mathrm{pH}=5.52$
d) $\mathrm{pH}=7.85$
5) $\mathrm{A} \mathrm{HNO}_{3}$ solution is found to have $1.12 \mathrm{~g}^{\mathrm{g}} \mathrm{HNO}_{3}$ in every 500 mL of solution. What is the pH of the solution?

Answers: 1) $2.2 \times 10^{-8} \mathrm{M}$, acid \quad 3b) $\left.\mathrm{pH}=14, \mathrm{pOH}=0 \quad 3 \mathrm{c}\right) \mathrm{pH}=8.4, \mathrm{pOH}=5.6$

