Section 4C Review

1) Compare and contrast the taste and the feel of an acid and a base.

Name:

2) Identify the following as an acid or a base, and name the acid or base:
a) LiOH
lithium hydroxide
b) $\mathrm{H}_{2} \mathrm{SO}_{3}$ sulfous acid
c) $\mathrm{H}_{3} \mathrm{P}$
hydrophosphic acid
d) $\mathrm{Cu}(\mathrm{OH})_{2}$ Copper (U) hydroxide
e) $\mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ dichromic acid
f) HIO_{3} Iodic acid
g) NH_{3} nitrogen trihydric
h) $\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{COO}$ benzoic acid
3) How is acid rain formed from pollution?
acid rain forms when pollution $\left(\mathrm{SO}_{2}, \mathrm{CO}_{2}\right)$ react with water vapor to form an acid in the clouds. Ex. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
4) If the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is $7 \times 10^{-5} \mathrm{M}$, what is the concentration of OH^{-}ions? Is the solution acidic or basic? Show your work!

$$
\begin{array}{ll}
K \omega=\left[H^{+}\right]\left[O H^{-}\right] \\
1 \times 10^{-14}=\left(7 \times 10^{-5}\right) x \quad x=\left[\mathrm{OH}^{-}\right]=1.4 \times 10^{-10} \mathrm{M}
\end{array}
$$

5) In the following reactions, identify which substance act as a Bronsted-Lowry acid, a BronstedLowry base, a conjugate acid and a conjugate base.
$\mathrm{HCO}_{3^{-}}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<====>\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
base acid C.base C.acid

$\begin{array}{cc}\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \\ \text {accel } & (\mathrm{aq})+\underset{\text { base }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<====>} \underset{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})}{\text { c.acid }}+\mathrm{HPO}_{4^{-2}}(\mathrm{aq}) \\ \text { c. base }\end{array}$
6) Draw a pH scale below and identify the maximum and minimum values, and the location of the various acidic, basic and neutral solutions. Then, on the same scale label the pOH values.

7) Write the neutralization reaction for the following acids/base combinations:
a) Carbonic acid and sodium hydroxide

$$
\begin{aligned}
& \text { arbonic acid and sodium hydroxide } \\
& \mathrm{H}_{2} \mathrm{CO}_{3}^{-2}+2 \mathrm{NaOil}_{-1}^{-1} \rightarrow 2 \mathrm{HOH}_{-2}^{-2}+\mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

b) Ammonium hydroxide and hydrosulfuric acid

$$
\begin{aligned}
& \text { Ammonium hydroxide and hydrosulfuric acid } \\
& 2 \mathrm{NH}_{4} \mathrm{OH}^{+-1}+\mathrm{H}_{2}^{-2} \mathrm{~S}^{+1} \rightarrow\left(\mathrm{NH}_{4}\right)_{2}^{-2}+2 \mathrm{HOH}^{+1}
\end{aligned}
$$

c) Magnesium hydroxide and arsenic acid

$$
\begin{aligned}
& \text { Magnesium hydroxide and arsenic acid } \\
& +2-1 \\
& \left.3 \mathrm{Mg}_{\mathrm{LH}}\right)_{2}+2 \mathrm{H}_{3}^{-3} \mathrm{AsO}_{4} \rightarrow 6^{-1} \mathrm{HOH}+\mathrm{Mg}_{3}\left(\mathrm{AsO}_{4}\right)_{2}
\end{aligned}
$$

8) Calculate the pH of the following substances. Tell whether the substance is an acid or a base.
a) saliva - $\left[\mathrm{OH}^{-}\right]=1.5 \times 10^{-9} \mathrm{M} \quad$ POM $=-\log \left(1.5 \times 10^{-\%}\right)=8.8 \quad 14-8.8=5.2$ acid
b) borax cleaner $-[\mathrm{OH}-]=2.2 \times 10^{-6} \mathrm{M}$ pOH $=-\log \left(2.2 \times 10^{-6}\right)=5.7 \quad 14-5.78 .3$ base
c) bleach $-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.3 \times 10^{-13} \mathrm{M}$
$p H=-\log \left(8.3 \times 10^{-13}\right)=12.1$ base
d) bananas $-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.7 \times 10^{-4} \mathrm{M} \quad \mathrm{pH}=-\log \left(7.7 \times 10^{-4}\right)=3.1$ acid
9) In a titration of 35 ml of an acetic acid solution, the end point is reached when 45 ml of 0.100 M barium hydroxide is added. Calculate the concentration of acetic acid.

$$
M_{A} V_{A}=M_{B} V_{B} \quad M_{A}(35 \mathrm{~mL})=0.100 \mathrm{M}(45 \mathrm{~mL}) \quad M_{A}=0.13 \mathrm{M}
$$

10) What is a substance called when it gives off a certain color if immersed in hydronium ions and gives off a different color in the presence of hydroxide ions?
an indicator
11) Explain what a buffer is and how it works.

A buffer is a solution that can neutralize a smalt amoant of acid or base to keep the pH from chenging. It resist pH change.

$$
L=250 \mathrm{~mL}=.250 \mathrm{~L}
$$

13a) How many mL of 0.90 M HCl solution need to be measured out in order for the solution to contain 1.5 g of HCl ?
$M=0.90 \mathrm{M}$
$\mathrm{mol}=1.5 \mathrm{gHCl}\left(\frac{1 \mathrm{moll}}{36.5 \mathrm{~g}}\right)=1.041 \mathrm{~mol}$
$\frac{0.90}{1}=\frac{0.041}{L}$ $L=$?
$L=0.0456 \mathrm{~L}$ or 45.6 mL
b) What would be the pH of the solution in (a) if the solution was diluted to a volume of 2.0 L by adding water?
$M=$?
$\mathrm{mol}=0.041 \mathrm{~mol} \quad M=\frac{0.04 \phi 1}{2.02}=0.0205 \mathrm{M}$
$L=2.0 \mathrm{~L}$
$\rho H=-\log (0.205)$
1.7
14) Calculate the pH of a solution that has an $\left[\mathrm{OH}^{-}\right]$concentration of $2.5 \times 10^{-11} \mathrm{M}$.
$1 \times 10^{-14}=\left[4^{+}\right] 2.5 \times 10^{-11}$

$$
\left[H^{+}\right]=0.0004 \mathrm{M}
$$

$$
-\log (0.0004)=
$$

\square

Answers to selected problems:
4a) $2 \times 10^{-9} \mathrm{M}$
8a) 5.2
12) 2.16 M
13a) 45.6 mL
8b) 8.3
8c) 12.1
8d) 3.1
9) 0.13 M
3b) $1.7 \quad 14) 3.4$
H. Chem

