Geocentric/Heliocentric

* Until Copernicus and Galileo, it was believed that Earth was the center of the solar system. Ptolemy even proposed an explanation of the planets' paths (epicycles)as they orbited the Earth
\not In the 1500s, Copernicus fought to establish a heliocentric model, where the Sun was center and Earth was an orbiter of the Sun. Galileo was able to see Venus through the new telescope and show that its phases were better explained by heliocentrism.

Using Brahe's data of the paths of objects in space, Kepler proposed three laws of planetary motion.

1. The paths of planets are ellipses, with the sun at one focus.
2. An imaginary line from the sun to the planet sweeps out equal areas in equal time intervals.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. The square of the ratio of the periods of any two planets revolving about the sun is equal to the cube of the ratio of their average distances from the sun, or

$$
\frac{T_{A}{ }^{2}}{T_{B}{ }^{2}}=\frac{r_{A}{ }^{3}}{r_{B}{ }^{3}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
Example
Mars takes 684 Earth days to
complete one revolution around the
Sun.
What evidence is there that Mars is
farther from the Sun than Earth?
2. In the distance from the Earth to the
Sun is 1 AU, how far is Mars from the
Sun?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Other methods of distances

With newer technology, radio waves can be fired off at objects in space. The radio waves will travel to the object, bounce off and return to the source. Measuring the time difference between when it was fired and retrieved can be used to determine the distance.
Extremely far off objects can be found by red shift. In this case, because the universe is expanding and the Doppler Effect, stars moving from us appear more red than they are. The difference between what we think they are and their redness can be used to determine distances.

Newton, later working on the idea of gravity said that all objects that have mass would attract one another. Thus, the force of attraction would also depend on the masses of the two objects. The following equation was developed:

$$
F=G \frac{m_{A} m_{B}}{d^{2}}
$$

However, Newton didn' t know what G, his universal gravitational constant was.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gravitational Constant

Cavendish used small masses and tension in a string to determine the universal gravitation constant to be $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

\qquad
\qquad
By combining Newton's Law of Universal Gravitation, centripetal acceleration and force, it is possible to solve for the speed of a satellite:

$$
v=\sqrt{\frac{G m_{E}}{r}}
$$

And the period:

$$
T=2 \pi \sqrt{\frac{r^{3}}{\mathrm{Gm} \mathrm{E}_{\mathrm{E}}}}
$$

\qquad
\qquad

As you know, the acceleration due to gravity at the surface of the Earth is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. However, as a spaceship gets farther from the surface, the gravitational field is reduced by the following equation. The gravitational field (a) at any point \qquad above the Earth's surface can be calculated by:

$$
a=g\left(\frac{r_{\mathrm{E}}}{d}\right)^{2}
$$

As we have talked about before, the amount of gravity is dependent on the square of the distance.

